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ABSTRACT

We consider the problem of determining optimal stock levels for a multi-item
inventory system in which demands for items occur in randomly selected groups,
causing in interdependent demand processes. This structure introduces dependen-
cies that significantly affect the selection of item stock levels in systems whose
performance is measured in terms of number of jobs completed or time until first
stockout. Performance bounds and stock level selection techniques for several such
systems are developed and analysed. ( ,2 . - -

I ~VIS CR'A.&I

DTIC TAB 

BY

A/or
Dist d C-iaor

I _ _



1 Introduction

We consider a multi-item inventory system of the following sort. Demands arrive
randomly in the form of requests for subsets of the multiple items. A demand is
met only when its entire subset of items is available. The key difference between

this system and many typical inventory models is that it is the number of demands

met (or not met) that is important, rather than the number of items supplied (or

short).

A classical example of such an inventory system arises in the repair of machines
in the field, e.g., the repair of computer terminals, photocopiers or other equipment

at customer sites. Service personnel are equipped with repair kits containing a
certain collection of parts and tools that are used for field repairs. Each repair job
requires some particular set of parts and tools for completion. The kit is typically
adequate only for some subset of the possible repair jobs. The perceived perfor-

mance of the kit will be the expected fraction of the repair jobs for which it is

adequate or the expected number of jobs which can be completed before stockout.
This type of inventory system is often called a "job completion" or "job fill" in-
ventory system. Other job completion inventory systems arise in stocking spare

parts to assure the completion of a specific mission. Examples are voyages at sea,
space flights or military missions. The performance criterion of the inventory is
the probability that the mission will be completed before a required part is not
available or the expected length of time to stockout. Another application arises in
filling orders for merchandise. If orders occur in the form of sets of multiple items,
the fraction of orders that can be filled completely is an important measure of the

system's performance. An analogous problem arises in 'build to order" production
systems in which final products have common components.

Job completion based inventory systems have been considered in the manage-

ment science literature in a variety of contexts. Sherbrooke (1971) considered an
inventory system in which a failed line replaceable unit (LRU) could be replaced,

i.e., the repair job completed, only if all failed subassemblies were available as
spares. Silver (1972) developed a dynamic programming solution for this prob-

lem. These formulations assumed that subassemblies failed independently of one
another, according to Poisson processes. Smith, Chambers and Shlifer (1980) ob-
tained a closed form optimal stocking condition for this type of problem in the

one period case, if the item stock levels are restricted to be 0, 1. Graves (1982)
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reformulated this as a 0,1 knapsack problem, which allows for the inclusion of linear

constraints, such as inventory space requirements. Hausman (1982) developed an

exchange curve analysis for this inventory stocking problem and Schaefer (1983)

integrated the independent demand job completion formulation into an overall in-

ventory management system.

A key assumption in the models discussed above is that individual item de-

mands are independent of one another, so that the probability that any particular

combination of items is required on a job is determined by the marginal demand

rates of the individual items. This property does not hold in many of the examples

cited earlier. In machine failures, for example, certain part failures may contribute
to the failures of other parts, while in order filling systems, demands may be cor-

related (either positively or negatively) for a variety of reasons. Mamer and Smith

(1982) developed an optimization algorithm, using the maximum flow/minimum

cut theory, to solve the 0,1 stock level, multi-item case, when individual item de-

mands are arbitrarily correlated and extended this approach to include the use

of spare replacement machines [Mamer and Smith (1985).] March and Scudder

(1984) developed an algorithm for determining optimal 0,1 stocking policies, sub-

ject to budget constraints. Recently, multi-item inventories are also being studied
in the context of production processes with parts commonality among products.

[Baker (1985), Baker, Magazine and Nuttle (1986).] As the examples analyzed in

these papers indicate, determination of optimal stocking policies in such systems is

difficult, even for products with only one common part. Given the large number of

part types used in many production applications, the ability to analyze larger prob-

lems appears important in this application area as well. In a recent paper (1988)

the authors develop a lower bound heuristic for a model which is quite similar to

the one considered here, but in which the job arrival process is a Poisson process.

We obtain bounds on system performance by exploiting the association property

of part demand processes which flows from the Poisson arrivals assumption.

This paper considers a formulation that is more general than those considered

previously for large problems. Item demands are dependent in an arbitrary man-

ner, as in the more recent models discussed above. Stock levels are not restricted

to 0,1 and multiple items of a given type are permitted on a particular job. Several

alternative performance criteria are considered, including the probability of com-

pleting a fixed number of jobs, the expected number of jobs completed before first

itockout, the expected time until stockout and the probability of serving all jobs

2



arriving within a fixed period of time. The resupply process for this analysis, as in

previous models, is fairly simple. It is assumed that once a request is unfilled (a
job cannot be completed), all items are restocked to their originally specified lev-

els. This neglects the effect of lead times and the possibility of stockouts at higher
inventory echelons. This assumption appears to be quite reasonable for the field

repair systems application discussed above, since repair personnel typically restock

completely whenever they are required to return to the parts supply center. In one

period inventory systems that support the completion of a single mission, there is
no restocking process, so this model captures the relevant features of these sys-

tems. For the performance criteria involving a fixed time interval, this assumption
is equivalent to a periodic resupply in which order levels can be readjusted up to

the time of delivery.

This paper derives and compares a variety of upper and lower bounds for system

performance. Since the tightness of the bounds varies by application, a set of upper

and lower bounds is advantageous in that the maximum lower bound and minimum

upper bound can then be chosen in any specific example.

Because of the complexity of the models considered in this paper, closed form
solutions for optimal inventory policies cannot be obtained. In fact, the system

performance for a given inventory level can be evaluated exactly only for problems

having a very small number of different jobs and parts. System performance for a

specific stocking policy can always be determined by Monte Carlo methods, how-

ever. When job arrivals form a renewal process upper and lower bounds on system

performance can be obtained, which are expressed as simple functions of the item

stock levels. The simple forms of the bounds allow optimization, subject to bud-
get constraints and other linear constraints, such as inventory space. Optimization

using bounds is important for this inventory system because it is observed that

objective functions involving the exact performance criteria are neither convex or

concave in the stock levels. Several example calculations are included in the paper

to illustrate the relationships between the bounds and more precise calculations.
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2 The Model

2.1 Specifications

The key demand data for problems of the type we are considering are contained
in the "job matrix" J, which is defined as follows:

Jij = the number of items of type i required
to satisfy a request (complete a job) of type j.

[In production applications, the concept of a repair job is replaced by a final
assembled product that contains some collection of items or subassemblies.]

Assumption 1:

Jobs or requests for items are assumed to have random independent interarrival
times with mean 1/A. The marginal probabilities for job types are defined as
follows:

pi = P(an arriving job or request is of type j}.

The type of each job i assumed to be independent of the types of past and future
jobs. The marginal demanud rates for individual items Ai i = 1,... ,n are then
determined by:

A, = A J,p,. (1)

where Aj, = average demand rate per unit time for item i, i = 1,...,n.

For any fixed time t, we define the random variables

Nj(t) = number of requests (jobs) of type j arriving by time t,j= 1,...,m

X,(t) = number of items of type i demanded by time t, i =1,...,n.

Letting
X(t) =(x,(*),..x-(t))
N(t) = (N,(t),...,N.(t)),

we clearly have the matrix relationship

X(t) = JN(t). (2)
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Let M(t), t > 0 denote the counting process of job arrivals. That is, M(t) is
the number of jobs which have arrived by time t; i.e.,

i M

M(t) E N(t).
J=1

Throughout this paper we assume M(t) is a renewal process, which restarts at each

restocking point. The J matrix introduces dependence among the components of

X(t). Even when each job uses a single distinct part, the components of X(t) may

be correlated. We summarize the dependence among the components of N(t) and
x(t):
For any t > 0

Cov(N,(t), Ni(t)) = pip(Var(M(t)) - E(M(t))).

If Var(M(t)) - E(M(t)) > 0 then for all i,j

Cov (Xi (t), X,(0)) !0.

2.2 Defining Performance Measures

In this subsection, we derive expressions for performance measures as a function

of the initial stock level. These are defined in terms of two random variables:

r = time of the first stockout

a = number of jobs completed (demands met)

before stockout

The performance measures are:

" probability first stockout is after time t P{r > t}

" expected time to first stockout E(r)

" probability that at least k jobs completed before stockout P{o > k}

" expected number of jobs completed before stockOnt E(o)

The most appropriate measure depends upon the application. For mission comple-

tion problems, P{(r > t} would be appropriate for a mission of given duration t, or

E(r) if the duration is uncertain. For field repair applications E(a) or P{u > k}
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would be appropriate, because these determine the probability that a repairman

can complete a given number of calls without stocking out. In the field repair set-

ting, the occurrence of a stockout for a single part forces the repairman to return

to the warehouse for the needed part and to restock his kit at the same time. For

the problem of repairing ships at sea, a stockout in a single critical part entails

a return to port or some form of emergency delivery. For specified item holding

costs h,, these performance criteria lead to corresponding stock level optimization

problems. Examples include minimizing the inventory cost of achieving a specified

performance level, or maximizing the performance that can be achieved with an

inventory budget constraint and/or space constraints.

For a given vector a = 1,... , of stock levels, where s, = initial stock level

for item type i, r the time to first stockout is defined by:

r = inf{t : Xi(t) _> s + I for some i, i = I,...,n}.

In words, r is the first time that the demand for some part or parts strictly exceeds

supply. Thus

P(AII requests filled up to time t} = P{X(t) _ s} = P{r > t}. (3)

When the time horizon is not known with certainty, a reasonable performance

criterion is the expected time to first stockout, E(r),

E(r) = f/ P( > tdt.

Wald's equation provides a relationship between E(r) and E(cr). Define a by

a = min{k : X(k) _? si + 1 some 1 _< i < n}

Let Y denote the (random) time between arrivals of jobs, where E(Y) - 1/A.

Wald's equation yields the identity

E(T) = E(Y)E(o) = E()/. (4)

Let

4(k) =number of jobs (demands) of type i in the
firt k arriving jobs since restocking.
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The marginal probability distribution for N,(k) is binomial

P{N(k)=u}= ()P (IP,) -u '

Let Tk denote the time of arrival of the W" job. We denote the functions of the
discrete index k by N,(k) = N,(Th) and Xj(k) = X(T#).

For fixed k, the distribution of jobs by type is a multinomial, since the type of
an arriving job is independent of both its interarrival time and its neighboring job
types. Thus,

P{ao>k}= W
(5)

where Ik = {zI z = k, z, 2! O} and H = {zlz > O, Jz < a). Now,

o) ..;. . 1 (6)k=OC- --AZ "! .-.Pr = SEE...! ... (Z.

Equation (5) can be used to obtain P{r > t} via the identity,

P{,r > t} = E'OP{a > tJM(t) = t}P{M(t) =

= O0( > }P(M(t)=I)

where the last equality follows since the job types are independent of the job arrival

process.

Equations (5) and (6) can, in principle, be used to calculate the performance
criteria for a given stock level. The calculations, however, are quite time consuming
even for fairly small numbers of items and stock levels. The difficulty is compounded

when we seek optimal stock levels, a process which may require evaluating a large

number of policies. Furthermore, computational experience has demonstrated that

E(a) and P{o > 1} are not concave functions of the stock level a. Thus global
optimality cannot be guaranteed, even when local optima are located.

2.3 Bounds

In this section, we develop a series of upper and lower bounds for the per-

formance measures. These bounds are important for two reasons: (1) the exact
performance measures are tedious to evaluate and for large problems the computa-
tion becomes infeasible (2) the exact performance measures do not produce concave
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or convex optimization problems, respectively, when maximizing performance sub-

ject to a budget constraint or minimizing cost subject to a performance constraint.

The bounds we develop, however, do lead to concave or convex problems, as a func-

tion of the stock levels. Thus the bounds can play the role of surrogate objective

functions that allow approximately optimal stock levels to be easily determined.

Furthermore, when the bounds are known to lie below the true performance level,

the optimized bound can be set so that a performance target is guaranteed to be

met. When several such lower bounds can be computed, as shown in later examples,

the best (greatest) lower bound can be selected as the best estimate of performance.

The power of the bounds is increased in stock level optimization problems by

combining them with more accurate (and time consuming) Monte Carlo evaluations

of the exact performance measures. That is, we use the bounds in defining well

behaved objective functions for determining "good" stock levels. We then use Monte

Carol to evaluate the exact criterion P{a > t}, E(o) etc. at that stock level.

Based on this evaluation, the constraints in the surrogate optimization could then

be adjusted and a new improved stock determined that more closely matches the

exact performance level target.

We begin with upper and lower bounds on expected time to stockout.

Lenma I With only Aaumption 1, we have the following upper bound on ezpected

time to Atockout

E(r) _ (/,\)U (7)

wihere

U = min({' +1I+ max,{Ji,}

Erf: Define

oi = inf{k :X (k) 2! .i + 1}.

Clearly,

Ev = Emin{ ,,...,uj.

It follows from Jensen's inequality that

Bar <_ min{Ea,..., E ).}.
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The process X,(k) experiences an increment of Jj with probability pi. If we let

Z1,... denote the sequence of increments then we have
vi

+I< Z: A _< , + I + max{ 3 ,),
int j

where the term on the far right is the maximum amount by which X (a) will exceed

s, + 1. Taking expectations on both sides and applying Wald's equation again yields

si + 1< E' .+1I+max(J,)
E(Z ) E(Z)

'i

and E(Z) = TpjJ,,. This yields
j=1

E(a) __ min si + m ax ({j 8) +  ()

Q.E.D.

The bound in (8) is simple to compute. Thus the right hand side of (7) is easily

determined.

It is often more important to obtain a lower bound on time to stockout. The

lower bound provides a "pessimistic" estimate of performance. This is useful be-

cause, by purchasing sufficient inventory, the pessimistic bound can usually be

brought to any specified level of system performance. This assures that acceptable

performance will be achieved, although some excess inventory investment is likely

because of the approximate nature of the bound.

Lemma 2 With probabiity 1, o the number of jobs until atockout satisfies

a. < r,

where a* = if{kj~ > 1)
Jul

and Rj denote* the maxmum number of conseutive jobs of type j which can be

served be/ore atoekout,

9
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Er., : It is sufficient to show,

{w JN(k) <a + 1} _w: <.
j=1 R,

Suppose that for some w, . Rj < 1, the definition of Ri then gives

3=1

r- N(k) < 1

Now

( m {8' + 1D-1-max3{-.
j,>} i 8i + 1

Thus

max <1

or
.JijNy~k) < ji +1. i--,.,,

j=1

Q.E.D.

Lemma 2 produces a major simplification because the vector relationship JN(k) <
a + 1 is reduced to a one dimensional relationship expressed as a weighted sum of
binomial random variables. Lemma 2 obtains a pessimistic bound for the proba-

bility distribution of the number jobs that are completed before stockout. In some

applications, the probability distribution of the time until stockout is a more appro-
priate performance measure. It can be noted in the proof of Lemma 2, that all the

implications are equally valid if Ni(k) is replaced with Ni(t), the number of jobs

of type j arriving by time t. Thus, using arguments analogous to those in Lemma
2, we can establish the following lower bound on the probability distribution of the

time to stockout.

Lemma S

P(X(t) < 8) = P{r > t P>{r. > t}

where
,'. = inf{tI I ,N(t) /R > 1)

end

Ri = min ((, + l)/J,,).

.l,,1 >0)
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The situation in Lemmas 2 and 3 is depicted graphically in Figure 1. Suppose

there are 2 possible jobs and 2 parts. The first type of job involves part 1 only and

the second parts 1 and 2. Suppose we stock 3 of part 1 and 2 of part 2. Plotted

along each axis are the number of jobs of type 1 and 2 observed. The solid lines

depict the constraints Jx < a+ 1. Thus the lattice points within this region indicate
combinations of jobs which can be repaired from stock on hand. The dashed line
is the set of points such that -IL = 1. The process N(k) moves from lattice

point to lattice point in a random fashion, but always to the northeast. (A typical

realization is given by the line marked with arrows). The lemma states that the
N(t) process always crosses the dashed lines before crossing the solid boundary.

Lemma 2 thus implies that the complementary cumulative distribution of a. lies
to the left of that of o in the sense that P{o. > k} < P{o > k) all k. Thus the

distribution of a. provides a bound on the distribution of a.

2.4 Computing the Bounds

Probability of Stockout

The distribution of o. is tedious to calculate exactly, but it is considerably easier
to compute than the distribution of cr. Define

Hk = {(t C Z') FI, = k,.. < 1}.
j=1 1=2 Ri

Then P,{a. > k) =l E..E kdE, £l!...tm!pl.. 9

For large values of k, (P(o. > k} can be approximated by the tail of a Normal

distribution. Since the N,(k) j = 1,...,m are multinomially distributed, we let

m N -(k kp,

covariance matrix yields

P{o. > k} = P{ NL( )1) O~l(),

j=1

N= (k)-
0'(k) = Var(E kE(~11p(-p)-U E /A(1Rpp.



where 0(. la, b) represents a univariate normal distribution with mean a and variance

b.

The Normal approximation can also be used to compute P{r. > t} 
P{2=1 N,(t)/,. : 1) for Lemma 3. Here we simply replace N,(k) above with

N,(t) and determine the revised mean and variance p(t) and o2 (t). We then have

by the Central Limit Theorem that

p{r. > t} r_ 0(1/IIA(t0,2'(t)).

This approximation is best when t is such that the N,(t) are fairly large. This in
turn implies that the si should be large enough to serve a substantial number of

jobs. Thus, the Normal approximations are appropriate when both the stock levels
and the number of jobs to be completed before stockout are large.

Expected Time to Stockout

The expected time to stockout E(r) can be bounded below by using the prob-

ability distribution P{r. > t}. That is,

E(r.) = P{,r. > t)dt < j Pfr > tdt = E(r). (10)

Thus E(r.) provides a lower bound on E(r). Given the complexity of the analytical
expression for the distribution of o. (and hence r.), the integral in (10) may be

difficult to calculate. We can, however, develop a simple, precise approximation to

E(a.) (and hence to E(r.)).

Lemma 4 The pessimistic bound E(v.) on number of jobs until atockout satisfies

il(pI/R ) < E(o.) < [1 + maxlpi/]l(lR l/f ).

Pr~f: Define Wk by

wP = N(k) - pk

where p = {pI,... ,p,.); Wt is a discrete time, R' valued martingale. To see this,

note

E(wk . Iwk) = E{W5 + wv . - p I W,

where P(w'+1 = e) = p, e, representing the 01A unit vector in RI. It follows then

that
E(Wb+I I Wk) = E(W5 I Wk) + E(wa,+ - )

"-Wh.
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For each n, wk 11< n establishing the martingale property. Note that since N(k)
moves only to the northeast (increases according to the usual vector partial order)

this implies that P(a. < co) = T; hence, a. _ Is(j + 1). The optional sampling
O-1

theorem applied to Wk yields

0 = E(W..) = E(N(o.)) - pE(o.). (11)

Thus E(N(o.)) = pE(o.). It follows from the definition of o., however, that with

probability 1

1_ -N(a.)<1 + mtax(-) (12)

Taking inner products on both sides of the vector equation (12) with respect to the
vector (i/RR,...,I/P,) and applying (13) yields

1<_.P -PE(o.) :_ 1 + max(I/Ri). (13)

Where the last term of (15) bounds the amount by which N(k) may overshoot the

boundary of the set F-j < 1. Solving (14) yields a lower bound L

mI 'N)I_ )II+ xIR).(4

L = ( <E(o.) ( (1 + max(R (14)
Rj ~ j=1 Rj

Q.E.D.

Note that in the extreme case in which each job uses every part, the bound L is

tight. In view of equation (7), L/A is a lower bound for E(r). Summarizing, we have

obtained the following bounds and appradmations for the performance measures.
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Table 1.1. Summary of Bound. Obtained

E(o) expected no of jobs completed

LOWER (1 + maxi{/P))/ EA=i A

UPPER U =mini {#~i+n d}.i

P{X(t) _s = P{no stockout by t)I = P( > t)
LoWER P(Ej'1 N,(t)/R, > 1)

P{0 > k) -P{at least k jobs served)

LOWER P{Ejt= N,(k)/Rj :_ 1)

-' (1/1&(k), 2 (k)) for large a, k

where:

J4 = mn({,/.,>o{ ( , + 1)/1,,),
,(k) = j,

a 2(k) = k E (1/R,)'p(1 - pi) - 2k E E 1/.RI/Rip.p

3 Finding Approximately Optimal Stocking Policies

I/he goal of our inventory analysis is to provide "good' policies for stocking. In
order to do this, we need to evaluate the performance of a large number of policies.

This is a difficult task in view of the complexity of equations (5) and (6).

This section uses the heuristic of replacing the actual performance criterion by

our bounds on the performance criterion. The bounds thereby provide surrogate op-
timisation problems whose solutions lead to 'good" inventory policies. The bounds
specified above offer particularly easy optimization. In addition, optimizations us-

ing the lower bounds offer guarantees of minimum performance. In our example
applicatidn, we concentrate on the criterion of the expected time until stockout.

Consider the problem of stocking a mobile repairman who operates in the fol-

14



lowing way. Starting with an initial kit of parts (e,... ,an), he answers repair calls
one at a time until encountering a job which cannot be repaired from the remaining

contents of his kit. At this point he returns to the parts depot to obtain the parts

for that job as well as to restock the kit. The trip to the parts depot results in
lost work time and customer good will. We take as our objective the maximization
of the expected number of repair jobs that can be completed before restocking is
required. Space is often tightly constrained in such service systems since the repair-

man's part supply, as well as tools, must fit inside his car. In addition, budgetary
constraints are an important consideration. Our objective will be to maximize the

expected number of repair jobs completed between restockings, subject to the bud-

get and space constraints. Let the cost of part i for inventory purposes be h. and
the space required by ri. Then the problem to be solved can be stated as

max E(T) (15)

s.t.

<V

Nr,,, <R.
.=R.

This example, as well as similar practical problems, can be written as

max E(') (16)

s.t.

* >0,
where A is a matrix containing the coefficients of the constraints on the stock levels.

In (15), E(r) is calculated from E(r) = E(o)/A. The previously discussed diffi-
culty in calculating E(a) is compounded in the problem of finding an optimal stock
level vector; any approach to optimization by enumeration requires the evaluation
of E(o) for a large number of stock level vectors. The possible number of such

vectors prows roughly in proportion to rsi, where (ew...,,) are the maximal
i-=I

feasible stock levels. It is interesting to note that the problem of maximising the
expected time to stockout is difficult even when the jobs consist of distinct groupe
of parts (ie., when part demands are independent). This is so because the time to
stockout is the minimum time to stockout of each of the parts.

I 15
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Because of the difficulty encountered in repeatedly evaluating E(o), we propose

two heuristic approaches to optimization. Our approaches involve optimizing the

upper and lower bounds for E(a). Let V (S1,...,8,,) denote the value of the problem

(16) at an optimal policy. We define

= max U(81,...,+.)(1/A) (17)

s.t.As < b

Ae>0

where U in given in (8) (the dependence on is,... , is made explicit in (17) for

clarity). Rewriting (17) yields

=max {min{:- "mat xiJMi 1}N(/A)

j=1

3.t.

As > b,

a, > 0.

This expression for * can be rewritten by introducing additional inequalities:

max t/A (18)

s.t.

i-i

As <b

i 0,i=1,...,n.

If, as nemu prudent given the approximate nature of (18), we ignore the integer

restrictions on the 44, (18) is a standard linear program. A moment's reflection

reveals that this is exactly the linear program one would obtain by ignoring the

random nature of the breakdowns and solving a deterministic stocking problem in

which each breakdown required TJi1 pj of part i.
1-1

On the other hand, maximiing our lower bound (equation (14)), gives a con-

mvative stocking policy and yields the optimization

16



maxpV. -= C, *I X,tg,( )- 1(/A) (19)
-- t ,..., , i..., , JW I R

s.t. As<b

R, _ (si + l)/ IJ each i such that Jj > 0, all "si _:0,i- =1,-., n

which is equivalent to

l/)[ min mpI/R]-' (20)

s.t. R, :_ (a, + 1)/Jj each i such that J.i > 0 all 3.

As <b
a,i >0,i-.1,...,n.

Problem (20) can be solved as with linear constraints and a separable convex ob-

jective.

Intuitively, V* is the result of optimizing the "certainty equivalent" problem in
which the random part demands are replaced by deterministic demands equal to
the expected demand per job. On the other hand V. represents a weighted max-
min criterion; the number of each job that can be served is determined by the part

that runs out of stock soonest. The time to stockout is estimated by the weighted
average of these stockout times. It seems reasonable that the policy given by the
optimization of the lower bound will be good when there is a high level of part
commonality between jobs. Indeed, in the extreme case, in which each part is used

in every job, . gives the optimal stocking policy. For the other performance criteria

in Table 2.1, conservative stocking policies can be obtained in a similar manner by
using the lower bounds to form surrogate objective functions.

4 Examples

We now turn to specific Illustrative numerical examples of the applications de-
scribed in section 4. The nature of the solution, as well a the efficacy of our
approaches to It, depend critically on the nature of the job matrix 3. Our specific

examples are designed to Illustrate typical situations which may occur in practice,
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rather than the "average" performance of our techniques applied to "randomly gen-

erated" problems. This approach will give some qualitative insights into the effects

of various types of part demand dependencies.

Our numerical examples concentrate on the problem of maximizing the expected

time to stockout, subject to a budget constraint. We consider 3 policies, the policies

resulting from optimizing the upper and lower bounds and the policy that results

from a part-fill type calculation, e.g., in which the dependence between parts is

ignored and stock levels are set so that the minimal expected time to stockout is

maximized for each of the marginal demand processes (subject to a budget con-

straint). This is obtained from the optimization

maxA
s.t. t < __9 S, = 1,...,n (21)

J=1
As < b

t>0,sj !0 i-- ,...,n

The problem (21) is similar to the upper bound optimization (18) (the righthand

sides are changed by a constant). The solution to problem (21) has the effect of

maximizing the minimum expected time to achieve a 0 stock level for each of the

marginal demand processes considered separately. As it concentrates only on the

marginal part demands we call this the "part-flU' heuristic.

In order to minimize the integer effects caused by part usages which occur in

batches, each of the examples the part usage matrix J was chosen to be a 0-1

matrix. For simplicity, we assume that the matrix A consists of a single budget

constraint of L ha _5 b where h, are the unit holding costs.

Each example has 20 parts and 10 jobs, the job probabilities were assumed

equal and part costs for examples are given in table 1. The job matrices are given

In Tables 2 - 7. In problem 1 each job consists of two distinct parts. Problem

2 entails a low level of commonality between the jobs and problem 3 a high level

of commonality. Problem 4 involves a cascading part usage structure, each job

requiring a subset of the parts used in previous (lower numbered) jobs. Problem

5 consists of a mixture of the overlapping and non-overlapping cues. Parts 1 -

6 are common to many jobs; 7 - 20 are used in different jobs. Problem 6 has
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the same part usage matrix as problem 5, but the part costs are changed so that

h, = ... = hs = 5 and h - = hs = ... =- ho - 0.01. In each case we take b = 500
and A = 1. Clearly, our choices of structures for J do not exhaust all possible

commonality types. They are meant to represent in a general way the structure of
part commonalities experienced in practice. Such structures can be characterized

as "separate' (problem 1), "minimal overlap" (problem 2), "significant overlap"
(problem 3), "cascading (problem 4), and a mix of "overlapped" and "separate'

(problem 5 and 6).

Table 7 compares the mean and variance of the time until stockout obtained
via Monte Carlo simulation. In each case we took the time between jobs to be

exactly 1 [A = 1]. The policy obtained using the upper bound as a surrogate
objective function was generally dominated by the policy obtained from the "part-

fill" optimization. The policy obtained from optimizing the lower bound performed

relatively well in those cases in which there was a high level of commonality of

parts between the jobs, and relatively poorly when there was little commonality.
While increasing the level of part commonality between jobs improved the relative

performance of the lower bound heuristic, part commonality alone is not enough to
cause the lower bound heuristic to perform much better than the part fill heuristic.

Problem 6 demonstrates the conditions under which the lower bound heuristic
performs better than either the upper bound or the part-fill heuristic. In problem

6, those parts common to several jobs (I - 6) are expensive and those parts used
in a single job (7 - 20) are cheap. No job can be performed without at least one

part specific to that job alone. By concentrating on the marginal demand rates, the
upper bound and part-fill heuristics over invest in those parts common to several

jobs and under invest in the unique parts. In contrast, the lower bound heuristic

equalizes the number of each type of job to be done and thus equalizes its parts

expenditure. For each of the problems tested the lower bound heuristic resulted in

nearly identical part stocking levels across parts, and the upper bound and part-

fill heuristics resulted in widely varying stock levels. This is due in part to the

assumed equal job arrival rates and in part to the 'max-min' nature of the lower

bound heuristic.

To further test the hypothesis that the quality of the solution obtained from
the lower bound improves as the problem becomes more dependent, we generated

2 sets of 10 problems with randomly constructed part usage matrices. The first set

had an average of 2 parts per job, the second, 12 parts per job. Table 8 summarizes
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the results of the experiment. Once again, the solution based on using the lower

bound as a surrogate objective fared better when there was a high level of part
commonality between jobs. We also see that the variance of the time to stockout
was smaller for the lower bound heuristic policy them for the part-fill policy. The
reason for this stems from the structure of the objective function in (21). With a

high level of part commonality, problem (21) tended to produce policies for which
the number of each type of job which could be completed from the kit is similar.

For a policy in which the number of each kind of job completable from the kit

is exactly the same, the variance in time to stockout is 0. Finally, it should be
noted that, as expected, the quality of the lower bound as an estimate of system

performance improved dramatically with higher levels of part commonality.

5 Conclusion

A key purpose of this paper has been to call attention to the importance of the

dependence among item demands in a multi-item inventory system. The type of
dependence considered in this paper arises naturally in many multi-item settings,

as discussed in the introduction.

When part or item demands show significant dependence, the potential error

arising from ignoring this dependence can be large. While ignoring the dependence

between item demands may lead to serious errors in assessing system performance,

exact stock level optimization with item demand dependence seems fraught with
difficulty. Evaluation of the exact formulas for system performance for a single

stocking policy is computationally demanding, even for systems with very modest
size. Monte Carlo is effective for evaluation of individual stocking policies, but is

not well suited for optimization because the objective functions are not concave or

convex.

Our solution to this problem is to develop easily computable convex or concave
bounds on system performance. In Section 4, these bounds were used as surrogate
objective functions to find policies which maximized the performance of the bound,
subject to a budget and other constraints. The simplicity of the bounds gives rise

to relatively simple surrogate optimization problems. Monte Carlo is then used to

test the actual performance of the stock levels determined by true optimization.

The results of our limited experience with the bounds are encouraging. The

part-fill heuristic gave reasonable performance when there was a low level of part
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demand dependence and the lower bound heuristic gives very good performance for

high levels of item demand dependence. In each case, the bounds themselves may

give rather large over- or underestimates of system performance, but the policies

resulting from the optimization of the bound performed well in the Monte Carlo

experiment.

Clearly, many interesting and unsolved problems remain in analyzing stocking

policies for interdependent multi-item inventory systems. Given the increased in-

terest in multi-item inventories in production, as well as in repair kit inventory

problems, we hope that the results obtained in this paper will stimulate further

progress in this research area.
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Table 1.

Part No. Cost (hi)

1 1.5
2 3.8

3 9.8

4 8.2
5 1.6
6 2.4

7 4.5
8 2.3

9 5.3

10 1.6

11 8.6

12 1.9
13 2.8

14 7.7
15 1.4

16 7.2

17 5.5

18 9.8

19 8.4

20 5.1



Table 2.
Problem 1.

parts jobs
1 2 3 4 5 6 7 8 9 10

I 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 1 0 0 0 0 0

I 10 0 0 0 0 0 1 0 0 0 011 0 0 0 0 1 0 0 0 0 0

12 0 0 0 0 0 1 0 0 0 0
13 0 0 0 0 0 0 1 0 0 0
14 0 0 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 0 0 1 0 0
17 0 0 0 0 0 0 0 0 1 0
18 0 0 0 0 0 0 0 0 0 112 0 0 0 0 0 0 0 0 1 0

20 0 0 0 0 0 0 0 0 0 1

31000000000nmmm."- 
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Table 3.
Problem 2.

parts jobs
1 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 0 1 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 0 I 0 0 0 0 0 07001000000.0
8 0 0 1 0 0 0 0 0 0
9 00 0 0 1 0 00 0 0

10 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 1 0 0 0 0
13 0 0 0 0 0 0 1 0 0 0
14 0 0 00 0 0 0 1 0 0
15 0 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 0 0 1 0 0
17 0 0 0 0 0 0 0 0 1 0
18 0 0 0 0 0 0 0 0 0 1
19 0 0 0 0 0 0 0 0 1 0
20 0 0 0 0 0 0 0 0 0 1



Table 4.
Problem 3.

parts jobs
1 2 3 4 5 6 7 8 9 10

1 1 1 I I I 1 1 1 1 1
2 1 1 1 1 0 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 0 0 1 0 0 0 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 1 0 0 0

14 0 0 0 0 0 0 0 1 0 0

15 0 0 0 0 0 0 1 0 0 0

16 0 0 0 0 0 0 0 1 0 0

17 0 0 0 0 0 0 0 0 1 0

18 0 0 0 0 0 0 0 0 0 1

19 0 0 0 0 0 0 0 0 1 0

20 0 0 0 0 0 0 0 0 0 1



Table 5.
Problem 4.

parts jobs
1 2 3 4 5 6 7 8 9 10

I I I I I I I I I I I
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1 0 0
5 1 1 1 1 1 1 1 0 0 0
6 1 1 1 1 1 1 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0

I 1 0 0 0 0 0 0
9 1 1 0 0 0 0 0 0 0 0
10 1 1 1 0 0 0 0 0 0 0
11 1 1 0 0 0 0 0 0 0 0

12 1 1 1 1 1 1 1 0 0 0
13 1 1 0 0 0 0 0 0 0 0
14 1 1 1 1 1 0 0 0 0 0
15 1 1 0 0 0 0 0 0 0 0

_ 16 1 0 0 0 0 0 0 0 0 0
- 17 1 1 1 1 0 0 0 0 0 0

.- i 18 0 0 0 0 0 0 0 0 0
| 19 1 1 0 0 0 0 0 0 0 0
~20 1 0 0 0 0 0 0 0 0 0
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Table 6
Problems 5 & 6.

parts jobs
1 2 3 4 5 6 7 8 9 10

I I I 1 0 1 0 1 0 1 1
2 0 1 0 1 0 1 0 1 0 1
3 1 0 1 0 1 0 1 0 1 0
4 0 1 0 1 0 1 0 1 0 1
5 1 0 1 0 1 0 1 0 1 1
6 0 1 0 1 0 1 0 1 0 0
7 0 0 0 0 0 0 1 0 0 0

', 8 0 0 0 0 0 0 0 1 0 0
r!! 9 0 0 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 1 0 0 0 0 0
12 0 0 0 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0 0 0 0

14 0 1 0 0 0 0 0 0 0 0
15 0 0 0 0 1 0 0 0 0 0
16 0 0 1 0 0 0 0 0 0 0
17 0 0 0 1 0 0 0 0 0 0
is 0 0 0 0 0 1 0 0 0 0
19 0 0 0 0 0 0 1 0 0 0

20 0 0 0 0 0 0 0 0 0 1

40 01 10 0



Table 7.
Montecarlo Results Sample Mean and Variance

of Time to Stockout

Example Lower Bound Heuristic Upper Bound Heuristic Fill-Rate Heuristic
Mean Variance Mean Variance Mean Variance

1 27.26 55.12 28.61 42.99 28.36 37.90
2 7.00 0.001 4.95 3.78 10.13 11.66
3 7.00 0.00 1.68 1.07 6.31 6.78
4 7.94 0.10 6.69 18.64 9.70 8.72
5 7.90 1.44 4.71 2.94 9.73 9.04
6 25.14 8.06 4.63 3.03 15.49 16.84

Table 8.
Montecarlo Results Sample Mean and Variance

of Time to Stockout - Randomly Generated Problems.

Lower Bound Heuristic Fill-Rate Heuristic
Mean Variance Mean Variance

2 parts per
job (average). 24.08 22.94 32.19 44.78

12 parts per
job (average). 6.28 0.21 6.44 1.11
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